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A Fast PEEC Technique for Full-Wave Parameters
Extraction of Distributed Elements
Swee Ann Teo, Ban Leong Ooi, Siou Teck Chew, and Mook Seng Leong

Abstract—In this paper, a full wave partial element equivalent
circuit (PEEC) technique using exact Green’s function is intro-
duced for the parameter extraction of a passive device in a homo-
geneous media over a wide frequency range from dc to a frequency
of interest. This technique makes use of some analytical techniques
and cartesian multipole expansion to derive simple closed form ex-
pressions for each individual element of the coupling matrices that
commonly arise in integral equation algorithms, in terms of the
wave number alone. Hence, these matrices can be reused each time
a new frequency is selected. As simple closed form expressions are
used, very fast computation is possible.

Index Terms—Parameter extraction, PEEC.

I. INTRODUCTION

T HE problem of parameter extraction of passive microwave
devices has received much attention as they are an in-

dispensable part of circuit design. Recently, with the develop-
ment of new processes such as low temperature cofired ceramics
(LTCC), it has been of interest to develop a fast method for the
characterization of passive devices embedded in a homogeneous
media [1], [4]–[8].

In this paper, we have chosen to use the partial element equiv-
alent circuit (PEEC) technique. This method is well suited for
parameter extraction as it converts the device into an equivalent
circuit model that can be simulated using a SPICE program.

In contrast to Garret’s work [2], [3] we have taken a more gen-
eral approach of using the exact Green’s function instead, and a
high order approximation later in the calculation of the coupling
terms. By using analytical methods and cartesian multipole ex-
pansion, simple closed form expressions have been obtained for
all the coupling terms with minimal error in terms of the wave
number. Hence, having tabled a matrix of such expressions, it
can be re-used at every different frequency.

II. THEORY

In LTCC, where the metal strips are very thin, and thus it is
convenient to use surface basis functions instead of volume basis
functions.

The following parameters are obtained:
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(2)

(3)

where is the surface conductivity, and, , and are analo-
gous to resistance, inductance and the reciprocal of capacitance,
respectively.

The computation of these integrals, especially (2) and (3), are
very time consuming. In this paper, we reduce the computational
requirement of evaluating such integrals by using a two-step
method. Analytical techniques and cartesian multipole expan-
sion are used to derive closed form series expressions for these
integrals. These series expressions are subsequently used to de-
rive simple closed form expressions for each element of the ma-
trix in terms of the wave number alone. These expressions usu-
ally consist of no more than an exponential term, multiplied by
a polynomial.

Therefore, instead of tabling a matrix at a certain frequency
directly, we table the coupling matrices that are made up of these
expressions. Due to the simplicity of expressions within the ma-
trices, actual tabling of the various matrices at different frequen-
cies becomes very efficient.

A. Self-Patch,

In this section, we first approximate the free space Green’s
function using the following Laurent series of six terms:

(4)

where . This approximate Green’s function has
an error of less than 0.6% for . Thus, for this Green’s
function to cover a total width of , the maximum size of the
basis function should be or less. Under such conditions,
the self coupling term calculated using this approximation will
have an error that is always less than 0.6%. As the size of the
basis function should be about , the above approximation
is sufficiently accurate for our analysis.

To proceed, we shall consider the integral in (3). Through a
simple substitution, (3) shall be rewritten as

(5)

where and . In order to obtain the value
of the integral, we need to make use of the fact that the integrals
of the following form:

(6)
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have closed-form solutions for when
and are simple polynomials of and , respectively

and
otherwise.

(7)

For instance, for , the following integral can be ex-
pressed as:

(8)

With these closed-form expressions, there is no need to
perform any numerical integration in the algorithm, so long
the basis functions are planar and can be expressed in terms
of piecewise polynomial functions, such as rooftop and pulse
basis functions. We notice that by using expression (4) with
the computed results of (6) which are obtained using closed
form solutions, simple expressions for the in terms of
can be derived. This expression was found to have negligible
error compared to numerical integration for , where

.
In addition, the storage and computational speed have im-

proved significantly.

B. Mutual Coupling,

When the elements are not overlapping and far from one
another, Taylor series expansion can be used to derive similar
closed form expressions in terms of the wave number, i.e.

(9)

where is the free space Green function, and

(10)

Therefore, for the following integral:

the expansion in (9) results in the following:

(11)

where

(12)

(13)

are the th moments of the and functions, respectively.
Using the odd and even function properties, further simplifica-
tions are possible. It is found in general that if the expansion is
carried out to calculate the coupling between elements that are
not overlapping, the degree for expansion serves as a very good
approximation. The error increases whenis smaller than the
expansion radius. The expansion radius is defined as the largest
value of or , used in the expansion.

C. Near Field Region Coupling

In the intermediate region, where the configuration falls into
both of the near and far field regions as was in Sections II-A
and II-B, closed-form solutions can be obtained by subdividing
the basis functions into smaller parts and combining both ex-
pansions.

After the basis functions are divided into parts, the relevant
expansions should be used. The coupling of overlapping and
neighboring basis functions are to be calculated using the Lau-
rent series expansion, and those that are further away are to be
calculated using the cartesian expansion. The subdivision can
be easily implemented using a recursive algorithm.

D. Modeling an Inductor

As an application of the technique, we shall model a 3–D
helical two–turn inductor (See Fig. 3). To simplify the analysis,
the component is assumed to be made up of flat narrow strips
of a conducting material with some vertical vias. As such there
is no transverse current component. This will allow us to build
a simple circuit representation of the device.

The node voltage , and node current, , assume the form
as

(14)

(15)

where . Using voltage excitation, we let the two
end nodes be connected to two voltage sources. Hence we obtain

(16)

where

(17)

(18)

and and are the relevant matrices to effect the transfor-
mation. The voltages and the currents are related to each other
via the following relationships:

(19)

(20)
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Fig. 1. 10log of resistive losses of test circuit for different values ofW
calculated using proposed algorithm, compared with results obtained using
IE3D.

Fig. 2. Inductance of test circuit for different values ofW calculated using
proposed algorithm, compared with results obtained using IE3D.

Therefore, by making use of the above relationships, one can
derive the current distribution on the wire and obtain the input
impedance of the system. It is also possible to use these equa-
tions to obtain the Z-matrix of the two-port system.

E. Results for a 3-D Helical Inductor

The Inductor line width is set at 10 mils, and the substrate
thickness is 7.5 mils for cases. The conductivity of the conductor
used is S m and the via to ground passes through three
layers. Using the above formulation for different values of,
the results are as shown in Figs. 1–3.

This method was found to be stable and accurate in its predic-
tion of self resonant frequency (SRF), losses, and inductance.

Comparing with numerical integration, the use of the carte-
sian expansion accelerated the algorithm by an order of magni-
tude. Further increase in speed was achieved by using the tech-
nique to derive simple closed form expressions to represent the

Fig. 3. Self-resonant frequency of test circuit for different values ofW
calculated using proposed algorithm, compared with results obtained using
IE3D.

terms in the various matrices, so that extremely fast tabling of
these matrices are possible at each different frequency point.

III. CONCLUSION

It was found that the use of cartesian expansion has allowed
us to develop simple closed-form solutions for the coupling be-
tween the basis functions. These closed form solutions can be
stored and used for each different frequency, thereby increasing
the speed of tabling the coupling matrices.

The overhead of deriving such closed form expressions to be
tabled into matrices via the above described techniques has also
been found to be low. This method is particularly suitable for
characterizing passive components, where simulation over large
frequency range is required.
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